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The performar, cc of a Mach 6 viscous optimized waverider was calculated

using the three-dimensional Navier-Stokes equations. The Mach 6 viscous opti-

mized waverider was generated using MAXWARP, a waverider generating code

developed at the University of Maryland. The numerical calculations were done

using CFL3D, an implicit upwind-biased finite volume algorithm developed at

NASA-Langley. The results were used h_r several purposes: validation of the

existing waverider generation code, calculation of the on- and off-design per-

formance of a waverider, and assessment of the validity of the use of waverider

geomet,'y as a forebody for an engine/airframe integrated design. Good agree-

ment was found l)etween the calculated performance by MAXWARP and re-

sults from the Math 6 Navier-Stokes calculation. Off-design performance of the

Mach 6 optimized waverider were calculated for Mach numbers of 4 and 8. The

performance at these Mach numbers compared well with the performance of

the viscous optimized waveriders specifically designed for these Mach numbers.

Contours of different flow paraineters in the cross flow plane were examined for

the three calculations. The results indicate that the flow gradients are relatively

small within the captured flow, and the variation itself is well behaved; thus,

making the waverider configuration a promising choice for an engine/airframe

design, especially for a cruise type application.
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Chapter 1

Introduction

The initiation of various programs in different countries to develop aerospace

planes to secure independent access to space and to et_ciently place payloads

in orbit, has revitalized interest in hypersonic vehicles. In the United States,

the initiation of the National Aerospace Plane (NASP) program has renewed

research efforts in the development of an air-breathing hypersonic vehicle for

various applications. These applications are not only space applications but

commercial applications such as long-distance passenger or cargo transport, as

well as military applications, such as reconnaissance, strategic airlift, interdic-

tion, surveillance, and strategic bombing. However, many technological as well

as system related obstacles have to be overcome before the first successful flight.

Based on preliminary research, the NASP program defined several critical tech-

nologies which were deemed essential for_tl_c design of such a vehicle 1 . These

include the scram jet engine, advanced material, and design of a fully integrated

engine arid airframe.

As the flight Mach number increases, the relative size of the propulsive system

of the vehicle to the airframe becomes large 2. Thus, to minimize losses, the

propulsive system must be an integral part of the airframe. One such design

would have the entire underside of the vehicle become the propulsive system.

In this design, the forebody, from the nose to the engine entrance, serves as

an engine inlet by precompressing the flow going into the combustor, and the

aftbody, from the combustor to the tail of the vehicle, acts as an engine nozzle



by expandingtile flowexiting from the combustorasshownin Figure 1.1. Thus,

for an engine/airframe integrated vehicle, the shapeof the forebody can have

significant impact on the performanceof the hypersonicvehicle. The shapeof

the forebody must be suchthat it can precompressthe flow sufficiently so that

combustioncan take placewhile maintaining flow uniformity. Furthermore, for

cruise type applications, the shape should provide high L/D (lift-over-drag).

Forebody l( Inlet ) =J-

,j Z-
H

( Nozzle )

Figure 1.1: Engine/Airframe Integrated Vehicle.

One of the most promising configurations to meet these requirements is an

old idea known as the hypersonic waverider. The advantages of the waverider

configuration over other configurations are that waveriders generate high L/D

and produce a flow field which has no cross flow on the under surface of the

body when flown at the design condition. However, the concept, which was first

introduced in 1959 by Nonweiller 3, has generally been overlooked as a shape for

a hypersonic lifting vehicle because the predicted performance of early designs

did not match the wind tunnel test results. This was due to the fact that early

waveriders were created using inviscid solutions and viscous forces were either



nevertaken into account or added after the design was determined. Thus, when

waveriders were tested in the wind tunnels, they either did not reproduce the

predicted performance or achieved poor performance in general.

These problems were resolved with the formulation of viscous optimized wa-

veriders 4. These conically derived waveriders were unique because skin friction

was taken into account in the design process. The end result was a new class

of waveriders which exhibited L/D values previously thought unobtainable by a

hypersonic vehicle. Since the introduction of the first viscous optimized designs,

both subsonic and hypersonic wind tunnel tests have been conducted to assess

the viability of various waverider-based configurations for an actual hypersonic

vehicle S.s. The initial results from the hypersonic test have indicated that these

configurations do perform as well as predicted by the design code.

1.1 Concept of Waveriders

A waverider is a type of supersonic/hypersonic vehicle which, when flying

at the design Mach number, has the entire bow shock on the underside of the

vehicle emanating from the leading edge of the body. As a result, there is

no flow spillage from the lower surface to the upper surface and the vehicle

appears to be riding on top of an attached shock wave; hence, the name "wa-

verider." Two unique features separate the waverider configuration from other

supersonic/hypersonic vehicle configurations. First, at the design Mach number,

high pressure flow produced by the bow shock is contained beneath the lower

surface. This containment of high pressure results in a vehicle with higher lift.

In general for a given lift coefficient, waveriders have higher lift-over-drag than

other vehicle shapes. Second, not only is the high pressure flow fully contained,

but the contained flow has no cross flow, and the inviscid thermodynamic prop-

erties are known everywhere in the region. Thus, the waverider configuration is

ideally suited for an engine integrated airframe.



1.2 Generation of Waveriders

To generate a waverider, two properties must be first defined: a generating

flowfield and either a leading edge curve or a trailing edge curve of a waverider.

Given a known generating flowfield and a leading edge curve, the lower surface

of a waverider is constructed by tracing the streamsurface from the bow shock

downstream to a desired location. Similarly, starting from the trailing edge, the

lower surface is formed by tracing the streamlines forward until they intersect

the how shockL Although Bowcutt et al. 4 used an expansion surface to increase

the vehicle's L/D, the upper surface is ordinarily constructed by tracing the

freestream surface from the leading edge.

When Nonweiller first introduced the concept of waveriders, better known

then as "caret wings" because of their resultant cross-sectional shape, he used

a planar oblique shock wave as a generating flowfield as shown in Figure 1.2.

Since then different flowfields including three-dimensional flows have been

used to generate waverider shapes. Work was done during the 1960's in Britain,

using supersonic flow past cones, to generate a class of "conical-flow" waveriders

as shown in Figure 1.3. Later, Rasmussen et al. s. 9, Cole and Zien _°, and Kim et

al. I I derived waveriders from circular and elliptic cones, and axisymmetric flow

using small disturbance theory. Most recently, Sobieczky et al._2 constructed

waveriders from given shock wave geometries using the method of characteristics

as shown in Figure 1.4



Freestream Flow

Wedge Defining Flowfield

Leading Edge Curve on Shock
Planar Shock

Figure 1.2: Caret wing.

Flowfleld Generating Body

Freestream

Bow Shock

Leading Edge Curve on Shock

Figure 1.3: Conical waverider.
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Figure 1.4: General shock waverider 12.



1.3 Optimization of Waveriders

Due to tile inverse nature of the method by which waveriders are generated,

i.e., the flowfield produced by the waverider at the design condition is known

a priori, the waverider lends itself well to various optimization processes. This

advantage was first pursued by Rasmussen et al. s. 9, Cole and Zien l°, and Kim

et al.'l. These authors used small disturbance theory to calculate the surface

pressure distribution on a generated vehicle and optimize the shape using the

calculus of variations. The concept of "optimized waveriders" was enhanced

further by the series of work done at the University of Maryland where the

waverider shapes were generated computationally, and the viscous effects were

included in the optimization process. The first such work was done by Bowcutt

et al. 4 who solved the integral boundary layer equation along the streamline

to calculate the skin friction. The configuration of the vehicle was then opti-

mized for lift-over-drag (L/D) by the simplex method of Nelder and Mead 13

These waveriders, which were optimized with viscous effects, gave birth to a

new class of waveriders coined as "viscous optimized waveriders." The viscous

optimized waveriders were unique because they were the first realistic hyper-

sonic configuration to break the "L/D barrier" proposed by Kuchemann14 as

shown in Figure 1.5.

The work on viscous optimized waveriders was continued at the University

of Maryland by Corda et al. i:, who used power-law bodies for the generating

flowfield in search of a better generating flowfield. Later, McLaughlin 16 used

chemically reacting cone-flow for the generating flowfield. Recently, Vanmo117

optimized t|w shape for L/D while using tile aerodynamic heating as one of

the constraint fm,ctions, and Chang TM included viscous interaction effects when

calculating the aerodynamic forces. Currently, O'Neill et al. 7 are optimizing

waverider shapes for scramjet engine integration.
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1.4 Present Work

Although tile test results confirm tile validity of the waverider concept, many

more questions must be answered before the waverider geometry is considered

as a practical shape for a hypersonic lifting body. These questions include

the off-design performance antt the effects of leading edge roundness. Since

waveriders are point design vehicles, i.e.., the the vehicle shape is formed for a

given design condition, tile performanc," of tilt" vehicle at on-design conditions

is well Understood; however, little is known about the off-design performance

of viscous optimized waveriders. Furthermore, to maintain an acceptable level

of aerodynamic heating, the leading edge of an actual vehicle must be rounded.

But the effects of the rounding of the leading edge on the loss of flow containment

and subsequent loss of performance is not known. This work is motivated by

our interest in the answers to these questions.

In this work the on-design and off-design performance of a Mach 6 viscous

ol_timized waverider are calculated by solving the three-dimensional Navier-

8



Stokes equations for Mach numbers of 4, 6, and 8. The optimized shape was

modified by rounding the leading edge to a radius of 1 cm to study the effect

of leading edge roundness. Note that the leading edge radius is small compared

to the overall vehicle length of 60m. The results from the Mach 6 calculation

are used to validate the existing waverider generation code: MAXWARP. Also,

contours of various flow parameters are examined at different cross flow planes

to determine the effectiveness of the waverider shape as a forebody design. This

work represents the first Navier-Stokes computations of a viscous optimized

waverider at off-design Mach numbers.



Chapter 2 ..........

MAXWARP

The waverider configuration used for the present study was generated using

MAXWARP (Maryland Axisymmetric Waverider Program) computer code15.

MAXWARP is a waverider design code which outputs an optimized waverider

geometry generated from either a conical or power-law body flowfield. As men-

tioned in the previous chapter, the lower surface of the waverider is constructed

by tracing the leading edge curve along the bow shock downstream, and the up-

per surface is defined by the freestream surface as shown for a conical waverider

in Figure 2.1.

The surface pressure for the waverider is calculated from the Taylor-Maccoll

equation if conical flow is used as a generating flowfield, or from the solutions

obtained by solving the Euler equations via a space marching method if the

power-law body flowfield is used as a generating flow field. The base pressure

of the vehicle is taken to be the freestream pressure value. The skin friction

is calculated using the reference temperature method. This method allows ap-

proximation for both laminar and turbulent boundary layer. The code allows

for fully turbulent flow, fully laminar, and a combination of the two. For the

mixed flow, the boundary transition is predicted using a correlation obtained

from experimental data.

The shape of the waverider is optimized, either for maximum L/D for a

cruise vehicle, or minimum drag for an accelerator, by varying the shape of

10



the leading edgecurve. The optimization processusesthe simplex method of

Nelderand Mead_3,and severalgeometricconstraints are imposedfor internal

volume considerations. Note that the waveridergeneratedby MAXWARP is

only optimized for a givengeneratingflowfield;hence,to obtain a true optimum

shapefor given freestreamconditionsand wall temperature, a comparison must

be made between results for several different generating flowfields.

11
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Frontal View

Generating Body ( Cone )

Bow Shock

Freestream Surface

Line of Constant Streamfunction Value
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Figure 2. i : Waverider Generation.
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Chapter 3

Governing Equations

The computations for the present study were done using CFL3D _°. 2, pro-

vided by NASA Langley Research Center. The governing equations for mo-

tion of fluids solved by this code are based on the unsteady, three-dimensional

Navier-Stokes equations. Written in a strong conservation form, they are

1. Continuity:

or" op",,__L"or',,__:" oe"_" _ o (3.1)
Ot--7-+ Oz* + Oy* + Oz*

2. X-momentum:

Op*u* Op*u "'J + p*
+

cgt" Or"
Ov"u" ,," Op" u "w" Or;. Or;_ OrL (3.2)

+ Oy* + cgz----;_= Ox" +"_'y" + Oz..'....7

3. Y-momentum:

Op" v* Op" u" ,," Op" v"_ + p" Op" v* w" Or;u 0r_-----_v+ -- (3.3)
Ot---''7- + Ox-'--7--- + Oy" + Oz------7_ - Ox'''7- + Oy* Oz"

4. Z-rliomelltum:

op",,," i_t,",,"w" Op",,"w_____",_p"_," + v" o_;, o¢;, 0% (34)
Or-'----:-+ Oz" + Oy" + Oz" = Ox-'-7 + _ + Oz-'-7-

5. Energy:

o(,,'%+ ,,'% + ,_'_;:- 4")
OZ*

0_" _)(,:"+ v'),," 0(_" +v')v" o(_" +v')_"
(gt-7 + Ox" + Oy" + Oz"

+ 0(,,',- L + ,,'% + ,,'r,;, - 4;) + O("'"L + '_'";, + _°'"5 - 'i:)
Oy" Oz*

(35)

13



3.1 Nondimensionalization of the Governing Equations

To obtain dynamic similarity and energetic similarity from geometrically

similar situations and to improve the efficiency of the numerical algorithm,

the dimensional variables in Equations 3.1-3.5 are nondimensionalized. Among

many choices available, the following nondimensional variables are used in CFL3D:

Z* y* Z* U* lV* W*
Z----- -- y Z'- -- It= -- 13"- -- W'-- --

= '-- P--:-" _" (3.6)
P p_ V=p_a£ e-Pooaoo."_

The nondimensional shear stresses, in indicial notation, are then given by

rz,r, - /z 4- + A_-_'x/6ij] (3.7)

Similarly, nondimensional heat transfer is given by

[ Moop ] Oa2Oz: = - [Re.oPt(7- 1)_ _ (3.8)

The molecular viscosity in Equations 3.7 and 3.8 is calculated using the Suther-

land's Law,

p = T] 1 + c/T_o (3.9)
T + c/T_,

where c is tile Sutherland's constant, c = 198.6 o R = 110.4 K and Stokes' hypothesis

A = -]IL is used for bulk viscosity. The nondimensional parameters are

Prandtl number • Pr = -_ = 0.72 (3.10)

, p* q* L*
l'reestreanl Reynolds number" ttcoo = _ (3.11)

Freestream Math mmfl_er: M_ = _ (3.12)
uoo

3.2 Transformation of the Governing Equations

The accuracy and the efficiency of the numerical scheme can be greatly

enhanced by transforming the curvilinear physical space into rectangular com-

potational space. For the present study, the unsteady three-dimensional Navier-

Stokes equations are transformed from the (x, y, z) Cartesian coordinate system

14



to a (_, o, () body-fitted coordinate system, where the _-direction is in the stream-

wise direction, the 0-direction is in the circumferential direction in the cross-

flow plane, and the Gdirection is ill tile normal direction from the body. The

transformation allows for the simplification of the boundary conditions, and the

reduction of overall grid points by clustering the grid in regions where the flow

variables experience high gradients and distributing them sparsely in regions of

low gradients. The transformation of the equations from Cartesian coordinates

to generalized coordinates was done using the following relations,

_ = _(_.,y,z)

o = o(x,y,z)

C : i(_, y, :)

Then using the chain-rule, the transformation metrics can be defined as

(3.13)

(3.14)

(3.15)

_ = J(yoz( - y( %) (3.16)

O,: = J(Y( z_ - y_z() (3.17)

(_ = J(y_z, - U,Tz_) (3.18)

_ = J(zC% - z,Tz() (3.19)

,ty = J(x_zc - _cz_) (3.20)

_ = J(x,z_ - x_%) (3.21)

_ = J(xny¢ - zc.!l,) (3.22)

,l: = .](x(,/_ - x_y¢) (3.23)

(.: = J(_'_Y,I - _..!l_) (3.24)

where J is the .lacobian of the steady transformation between the Cartesian

coordinates (z,!t, :) and the generalized coordinates (_, 0,_) given by

O(z,y,:)
1

• _(y,lzc - ycz,_) - y_(z,_z c - z¢%) + z_(_:_yc - zCy.)
(3.25)
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3.3 Thin-Layer Navier-Stokes Equations

Since the dominant viscous effects at high Reynolds number arise from vis-

cous diffusion normal to the body and the flowfield is expected to have minimal

separation, the thin-layer approximation is employed. The thin-layer approx-

imation neglects all the viscous stresses in the direction parallel to the body

surface, which are the ¢ and r/directions; furthermore, any mixed derivatives

are neglected. Then the governing equation used in the present study written

in vector form is given by

s0 0P aO o(fl -ffv)
+ o( - 0 (3.26)

where, 0 represents the conserved variables,

p

pu

Q=Q_= 1
j j pv

F, (;,, and H rel)resent the inviscid fluxes,

toll)

(3.27)

1
F=y

pU

pU u -Jr_p

pUv + (yp

pUw + _p

(c + v)U

(3.28)

1
0= 7

pV

pVu + _7*P

pVv + flyP

pVw + rl_p

(c + p)v

(3.29)
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pW

pWu + (,_p

pwv + (_,

pWw + (_p

(e + p)W

(3.30)

U, V, and W are the contravariant velocity components, which represent velocity

components perpendicular to constant planes of g, T/, and (, respectively, and

are defined as

U = _xu+_yv +_w

V = rl:_u+ rl_v + rl_W

W = Gu+(yv+Gw

(3.31)

(3.32)

(3.33)

The pressure is related to the flow variables by the equation of state for an ideal

gas,

and q_ is the sum of the squares of the velocities,

q2 = u 2 + v_ + w 2 (3.35)

The viscous flux/f_ is given by

where

0

4,1u_ + (_-¢2

(3.36)

_2 ----
(Gu¢ + _yv¢ + Gw¢)

(3.37)

(3.38)
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Chapter 4

Numerical Algorithm

CFL3D uses a semi-discrete finite volume method to solve for the governing

equations. The steady state solution is obtained using a 3-factor implicit time

advancement algorithm. Tile inviscid flux vectors are upwind differenced using

Roe's flux-difference-splitting scheme 22 and the viscous flux vector is centrally

differenced. The algorithm is second-order accurate in space.

4.1 Spatial Discretization

The semi-discrete finite volume form of the governing equation is given by

aO), .k(-ff .,. + (:,÷_.,._ - k,__.,._)

+ (G,.j+½,t-Gi.j_½,t)+(if/ - tl_)i+½d.k--(/q--/]v)i_½d.k)=0 (4.1)

where the spatial derivatives are written conservatively as a flux balance across

each cell and for convenience the c('ll size is taken to be unity. In Equation 4.1,

subscript (i,j,k) ref('rs to the cell-center location (_,,r/_,(_), and, for example in

the _-direction, i + _J corresponds to the cell interface location (_i+½, rlj, _). The

inviscid interfa('(' [luxes in equation 4. I, f, C,,, and/'t are determined by the use of

Roe's flux (tiffer('n('ing splitting technique which incorporates Roe's approximate

Riemann problem solver. The viscous flux tlv is centrally differenced.

4.1.1 Godunov Method

l{oe's flux difference splitting method is based on a method originally de-

veloped by Godunov '_ In the Godullov method, the conserved variables are
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consideredpiecewiseconstant within eachmeshcell at a given time level, and

evolution of the flow to the next time step is basedupon the exact solution

to the local Riemann problemdefinedby the conditions acrosseachcell inter-

face. The new constant valuesfor eachcell are taken to be the averagevalue of

the conservedvariable acrossthe cell, thus making this method a finite volume

method. The exact relationship for the averagedstate is obtained by integrat-

ing the conservationequation. For example, integrating the one-dimensional

conservationlaw equation,

OQ OF
W + : 0 (4.2)

over the domain x to z + Az gives

d f,+Lx=-_ _z Q(x, t)dz = F(x, t) - F(z + Ax, t) (4.3)

If the equation is further integrated in time, from t = n A t to t = (n + 1) A t, the

exact relation is given by,

Q"+_ (x, t)dz - Q'_(z, t)dx = - A t[f(Q(x + Ax)) - f(Q(z))] (4.4)
JZ

where f is the time averaged inviscid flux between t = n A t and t = (n + 1)A. If

we define the average statc variable across the cell z to z + Az as

: ! (4.5)

the exact relation becomes

At
Q_+_ - Q? = -A-gx [f(Q'+½) - f(Q'-_)] (416)

The equation equates the variation of the cell-averaged conserved variables

across time level At resulting from the 1)alance of the time-averaged fluxes at

the cell interfaces. It is interesting to note that the conservation equation 4.6

has the same form as the general three-point explicit difference scheme in the

conservation form,

At
QT+_ - Q;' - - A---_[/_(Q'+') - k(Q,_ • )] (4.7)

Hence, the numerical flux of the scheme is considered to be the approximation

to the time-averaged l)hysical flux and the mesh point value is the cell-averaged
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value. In Godunov's method the numerical flux or the time-averaged flux is

obtained from the exact solution to the Riemann problem across each cell in-

terface. Consider @n(z/t, OL, On) as the exact solution to the Riemann problem

defined by the initial conditions,

Q = QL z < 0 (4.8)

Q = Qn x > 0 (4.9)

along a ray x/t. Tile approximation of tile time-averaged flux across cell bound-

aries or the numerical fluxes, P(Q_+½) ,,_(O,-½), for the Godunov scheme can be

calculated from the exact solution to the Riemann problem at each cell bound-

ary, i.e.,

f(Q_- ½) = r(Qn(O, Q,-l, Qi)) (4. l 0)

_'(Qi+½) = F(Qn(O,Q,,Qi+I)) i (4.11)

Substituting the above equations into the general conservation equation gives

Q,, +I At
, = Q'_ - _ [F(QR(O,Q,,Qi+,) - F(QR(O, Qi-,,Q,))] (4.12)

4.1.2 Roe's Flux Difference Splitting

In Roe's Flux Difference Splitting Method the numerical flux is the inter-

face flux calculated from the approximate Riemann problem solver of Roe's.

Tile incorporation of an approximate Riemann problem solver is based on the

idea that, since the original Codunov scheme relates only an approximation of

the exact solution, one might be satisfied with approximate solutions to the

Ricmann prol)iem if the non-linear behavior of the solution is retained. Roe

suggests apt)roximate solutions which are cxact solutions to an approximate

problem given by

Q, + A Q_ = 0 (4.13)

The matrix ,4 is a constant ,lacohian matrix constructed from some average

state Q which is based on the left arid right states, QL and Qn. Roe required

that the matrix mast satisfy the following properties:
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(l) F(Qn) - F(QL) = ft(Qn,Qt)(Qn - QL)

(2) If Q = QL = Qn then, A(Qt, Qn) = A(Q) = OF/OQ.

(3) The eigenvectors of A(QL, Qn) are linearly independent.

(4) It constitutes a linear mapping from the vector space Q

to the vector space F

The average states that satisfy these properties are given by

UL 4- Dun

14-D

{I - HL ÷ DHR
I+D

= (v- 1)[H - _2]fi2

where

V PL

Hence the averaged Jacobian matrix A becomes

(4.14)

(4.15)

(4.16)

(4.17)

0 1 0

-(2 - ,_)u_ (2 - ,_)u2

('_=- H)u H-_f_= (l+n)t_2

(4.18)

where _: = (7 - 1) for perfect gas. The interface flux, i.e., the numerical flux for

the scheme, is calculated using

/;_+_ = _[F(Qn) + F(Qt.) - [_lAIk'l(Qn - QL)],+_} (4.19)

where k and R-t are the right-eigenvector matrix of A and its inverse, respec-

tiw_ly, and IAI is the diagonal matrix consisting of the absolute values of the

eigenvalues of matrix A, i.e.,

Ihl =

lu- al 0 0

o lul o

o o I_+al

(4.20)
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The dissipation term contribution to the interface flux in a three-dimensional

generalized curvilinear coordinate system in the _ direction is given by

IAI(QR- QL) = IAI lxQ

a4

f_a4 + kta5 + a6

f)a4 + kya5 + a7

tba4 + kza5 + as

Ha4 + da5 + _a6 + vat + if)as - (fraca27 - 1)al

(4.21)

where

el I

_2

a3

'17-12a" I_,+ cl(Av + pa A _)

= _ I_,-cl(Ap+paA_,)

a4 = al + a_ 4- a 3

(4.22)

(4.23)

(4.24)

(4.25)

a5 = a(a_-a3)

.6= I_]lTil(pA,,- k=pA u)

a7 : [_[,fil(pAv-kypAfi)

as : [70,1][(pA,,,-k_pAt_)

(4.26)

(4.27)

(4.28)

(4.29)

The " superscript denotes the Roe aw',raged states given by

P : _ Pie

uL + uuD

I+D

VL + v,,t D

I+D

(4.30)

(4.31)

(4.32)
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_ WL + wnD (4.33)
I+D

fI = HL + HnD (4.34)
I+D

= (7- 1)I'|_/ _ (fi2 -t- _2 + tb_)|] (4.35)d_
2L J

where D is given by equation 4.17. I-_t[ is the magnitude of the directed area of

the cell interface in the _ direction and

(k=,k,,k,)= (_"_Y'_') (4.36)

are the associated direction cosines. The contravariant velocity normal to the

cell interface is denoted

fi = k,u + kvv + k_w (4.37)

When _t. = Qi and Qn = (.2,+_ are used for the interface values, the scheme

is only first-order accurate in space due to tile averaging across the cell; hence,

the MUSCL (Monotonic Upstream Scheme for Conservation Laws) approach is

applied to Roe's first order scheme to obtain spatially higher order differencing.

The interface conserved variables are constructed from the primitive variables

q = [p,v,v,w,p] T which are redefined a.s

(qL),+½= q, + - + (l + I¢)(_-qi)] (4.38)

(qn),+,_ = qi+t - _[(1 + tc)(/kqi+t) + (1 - K ) (_'q-i+ 1 ) ] (4.39)

where A and _ are the forward and backward differencing operators, respec-

tively, which are limited to maintain monotonicity by

Aqi = minmod(/kq,, fl _7 q,) (4.40)

Vql = minmod(_Tqi,fl/k %) (4.41)

where

minmod(x, y) = max[O, min(x sign(y), y sign(x))] sign(x) (4.42)
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3--K

(4.43)fl-l-x

Aqi = q, - q,-1 (4.44)

Vq, = qi+l - qi (4.45)

was set to be _, which corresponds to third-order spatial discretization, for all

of the computations done for this study.

4.2 Time Integration

Since the steady state solution is sought, the governing equation is integrated

implicitly in time to take advantage of local time stepping. The time derivative

in the governing equation is approximated by first-order forward differencing

resulting ill the following equation:

"+' (oe "+' o(H .,)
+ + + O_ = 0 (4.46)At

The flux terms in the above equation are non-linear; therefore, a linearized

scheme is applied. For example, using a Taylor series expansion, the flux term

in _ direction is approximated by

OF
,_,,+l = _., + -_ A t + O(At) _ (4.47)

Using the chain-rule, or can be rewritten as

OJi" O/_'OQ (4.48)
Ot - _Q Ot

for time independent grid system. Substituting this equation into Equation 4.47

yields-

_k oQ
E "+_=F"+OQOt At+O(At) 2

Using tirst-order forward differencing for the temporal terms,

_Q 0"+'-0" lxQ
0-7= at + o(At) = _/- + o(at)

(4.49)

(4.50)
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and using

Equation 4.49 becomes

oP
A = ----=-. (4.51)

OQ

ok a O + o(z_t)_: F" + A a O+ O(Z_t)_ (4.52)

Similarly, the fluxes G,/:/, f/_ are linearized as

(Y'_+' = 6" + -ff_ A 0 + O(At) _ = G'_ + n A 0 + OtAt) 2 (4.53)

Of] It"
ft"+_ = /t"+-_AO+O(A&= +CAO+O(AO 2 (4.54)

]iv "+' = tL"+OtL AQ+O(At) 2----:--.= I-],"+C_AQ+O(At) _ (4.55)
aQ

Substituting Equations 4.52 through 4.55 into Equation 4.46 and rearranging

terms yields the delta form of the Euler implicit formula which is given by

1
[Y-K/+ 6_A + 6,n + _(C - C_)]" A O

[O_" 06 O(Z_.#,)]"= - "_ + _ + = -(RHS) n (4.56)

where

AQ = Q,+l _ Q,, (4.57)

Note that RflS is evaluated at the known time level. Applying the spatially-split

approximation-factorization method, Q at the n+l step is calculated by

I

[-_-_ + 6_A]" A Q" = -(RHS) n (4.58)

I I

[-_-_. + 60 B]" A Q'° = [j-_] A Q* (4.59)

1 I
[.TA-t + 6<(C - C,)]" A Q = [j-A-_] A Q'" (4.60)

O"+' = Q" + AQ (4.61)
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where $ is the difference operator and the subscript denotes the direction. Each

of the spatial factors is approximated with a diagonal inversion of the Jacobian

matrix. For example in the _ direction

where

I 1
[2-A'/+6_A]"aQ" = [ThS + 6f(RAR-t)] ,_ A Q"

I
= [YET + 6_(R(A+ + A-)R-')]" a O"

I
-_ R[7- _ + 6_-A + + 6_A-IR-' A Q" (4.62)

_ A+ IAI
2 (4.63)

and a first-order backward differencing approximation (6-) is used for the posi-

tive diagonal matrix (A+), and a first-order forward differencing approximation

(6 +) is used for the negative (A-) diagonal matrix. Then the _-sweep of the time

integration becomes

I

[_-A-_ + 6_-A+ + 6_A-](R=' A Q*) = -R-'(RHS) (4.64)

Since the first three elements of the diagonal matrix are the same, only three

scalar tridiagonal 1,U decompositions are required for each sweep. The tridiag-

onat matrix equation is given by

-A+(M__½,Q,-I)(R -I A Q')i_l

I
+[ _--_--/. 4 A+(M,+., O,) - A - (M,_ ], Q,)]( R-' A Q" ),

-A-(Mi+½,Q,+I)(R -I AQ*)i+t = -R.X(RHS)i (4.65)

where, for example, A+(M,_ ½,Q,) denotes that the metric terms Mare evaluated

at cell interface location i-½, and the state variables are evaluated at cell-center

location i in A+. The direction cosines of the cell interface orientation contained

in the diagona]ization matrix R -_ are averaged values so that they represent

values at cell-centered locations. For the (: direction, the spectral radius scaling

of the viscous Jacobian matrix developed by Coakley24 is used. The (_ spatial
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factor is approximated as

I I 6_A- +6_ vllR-' AQ[7_ + _<(c - cd" zxQ ._ R[y-_ + _^+ +

where

6_I = I_+,- 21, + I_-]
(Ax)2

(4.66)

(4.67)

(4.68)

and t*_,_ is the largest eigenvalue of C_, that is, l,m,_ = rnaz( (4/3)#, (7/Pr)lz).

4.3 Turbulence Model

The effects of turbulence are accounted for through the concept of eddy

viscosity and eddy conductivity. The molecular viscosity _ is replaced by an

effective viscosity t_, and similarly the thermal conducivity k is replaced by an

effective thermal conductivity k,. The effective viscosity is calculated by

#e = # + I_, (4.69)

#, is the eddy viscosity which is calculated using the algebraic turbulence model

of Baldwin and Lornax'9 By using Reynolds analogy, the effective thermal

viscosity is calculated by,

k, = k + kt = -_-r (1 + _--) (4.70)

where Pr, is the "turbulent" Prandtl number and a value of 0.8 is used.

The turbulence model by Baldwin and I,omax is a zero-equation model where

the turbulent boundary layer is divided into two zones: inner region and outer

region. The eddy viscosity in the inner region is approximated by

_,, = p/_lo;,I (4.71)

where w_ is the vorticity defined a.s

Ou Ov

wz- Oy Oz (4.72)
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The outer region is approximated by

/at = crpC_vF_,,,k_FKI_b (4.73)

where c, and (:c_ are constants with values of 0.018 and 1.6, respectively, and

F,_ok_ is

F,,,att = rain [Y,,,a,_G,,,,,_, CwoJ,,yma_ (AV)] (4.74)c,,,o_ J

A value of 0.25 is typically taken for C,_ok, and G,.o, is defined as

G,,,,= = rnax ( t lw=l) (4.75)

where ,c _ 0.4 is tile von Karman constant. The mixing length, l, is determined

by

I = t:(1 - e -A--t_')y (4.76)

where standard definition of y+ is

y+ =y-- u (4.77)

A + is a parameter with a value of 26.0. _V denotes the difference between the

absolute values of the maximum and minimum values of vorticity within the

viscous region. Fm,_ is the K]ebanoff intermittency factor, given by

[ (±/°]-'FK_b = 1 + 5.5 CKtc_ (4.78)

where Ckt,_ = 0.3 and y,,._ is tile y location where G,,a, occurs.
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Chapter 5

Grid Generation

5.1 Elliptic Grid Generation

To solve tile governing equations by means of a finite difference approxima-

tion, a set of grid points within tile domain of interest, as well as the bound-

aries of the domain must first be specified. Furthermore, to solve the governing

equations given l)y Equation 4.I accurately, a grid system with the following

properties is desired2r':

(1)A guaranteed one-to-one mapping, which ensures grid

lines of same families do not cross each other.

(2) Smooth variation of grid points.

(3) (_lusl.ering of grid lines near the surface

(4) Orth()gonality of tile grid lines near the surface

To satisfy these prol)erties , the grid system used for this study was generated

using an elliptic grid generation method developed by Steger and Sorenson 2s.

In this method a system of partial differential equations is solved in a compu-

tational domain for tile physical grid points as shown in Figure 5.1.
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by

The governing partial differential equations, in the physical domain, are given

02,l
O_t/+ = P(T/,() (5.1)
0y--_

0y---_ + _ = O(,_,_) (5.2)

where P0t,() and Q(t/,() are the forcing functions which ensure grid clustering

and orthogonality near the boundaries. Transforming the Equations 5.1 and 5.2

by exchanging the independent and dependent variables, gives

°2u - 2Z °2y °_' - -.12tp_ °Y (5.3)

O_z i)2z 0"2z = _j2(pO__q + Oz_ _-_0_- 2_0-_ + _-_ = Q_) (5.4)

where

O_y O_z
= _ + -_ (5.5)

Oy Oy Oz Oz
= + (5.6)

0,1 c_( O,i O(

02y O_z
v = _-_ + b-__ (5.7)

Oy Oz Oy Oz
Y = 07 o< o_0_ (5.8)

The Equations 5.3 and 5.4 are two independent equations, which are solved in

the computatio,ial space (,_,(:) for the physical grid coordinates (y, z). To obtain

a grid which is orthogonal and clustered at the surface (( = (:1), Steger and

Sorenson proposed forcing functions having the form,,

I' = p(n,(_),..-"(¢-¢,) (5.9)

Q = q(,i,(l)e -6((-_') (5.10)

where a and b are specified constants. While tl,e governing elliptic equations pro-

vide the smooth one-to-one distribution of points, the forcing functions, p(rl,(,)

and qQl,(_), must be derived to satisfy the other two desirable properties, namely
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grid clustering and orthogonality at the inner boundaries. At the inner body,

( = (I, Equations 5.3 and 5.4 yield two independent equations for the forcing

functions, p(r/,G) and q0/,(1), given by

where

p(_,6) =

Oz Oy R2

-Na,+N
J

(=(;i

(=(t

RI =

R 2 =

• cg_y Oey

(=(1

,]2

-(_ o,_o(,

j2
J (=G

(5.11)

(5.12)

(5.13)

(5.14)

For the above equations, since tile l)oundary values are fixed along (: = (1, all

tile ,/-derivatives, y,, z,, y,,, and z,, can be calculated using known boundary

point values. The first (-derivatives arc derived so that grid orthogonality and

clustering can be maintained at tl,e inner boundary. As shown in Figure 5.1,

the spacing between tl,e inner boundary and the first constant ( line can be

(h,scri be.d a.s

I(:(,: [j(A,)', +

In the limit as Ay and Az go to zero,

(5.15)

llsing th(, chain rule, the equation can l)c expanded as

"Z/Oz Oz) 2 ]+ _Nd,l+ -_d( (5.17)

(=G

ds I(=q, =
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Since 17is constant along ( = G, the above relationship can be reduced to

d=;,:<,= _?d¢ +Cy ()
(=(i

which can be rewritten as

(5.18)

as k=¢, = _ + \_7
( (=¢,

To achieve grid orthogonality along the inner boundary, consider the definition

of a dot product,

IV,l- v(]¢:(, = [Ivo IIv( 1_o_0]¢=¢,

where 0 = =/2 giw,s grid orthogonality. Expanding the equation gives

cOy "_y + -_: "ff_:J ¢:¢, -_y + _y + cOz,I cosO (5.20)
(=G

Exchanging the independent and dependent variables gives

<=<, V\g) to_)
(=G

Combining equations (5.19) and (5.21) produces the first (-derivatives,

0_"s(_t-N "

II(_-I,..:+IE)
[ +(=)

(=(_i

(=(i

(5.22)

(5.23)

The cross derivatiw_s y,< and :,,( can be then calculated by differencing the

known derivatives .u< and z¢ with respect to 7. Note that all the derivatives
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mentioned above are calculated from known boundary point values, so they do

not change with iteration levels. Only the derivatives u_¢ and z¢¢ change with

each iteration, which can be calculated by

z_ I_=_, = -7z 1¢=_, +8z I_=¢_ -z I_=c, 3z_ k=_,
2(/_() 2 A(

3y<It=c, (5.24)

(5.25)

With a given initial grid distribution and desired minimum spacing along the

inner boundary, Equations 5.3 and 5.4 can be solved using any relaxation scheme

for elliptic partial differential equations. One note of caution, the p and q values

_,calculated by Lquations 5.11 and 5.12 can be quite large, which in turn can

cause instabilities during the initial iterations. Hence, the values of p and q are

under-relaxed. The new values of p and q at each iteration are calculated by

: =:-' +StCN {mi. [,_, IP-_,"-' I. P,,,,.m._(I : -' I.l)]. p-p"} (5.26)

q"-qn-I+SlGN{min[welq-q ''-' I,q,i,,,rnax(lq"-] 1,0], q-q"-a} (5.27)

where superscript n- 1 denotes the previous iteration values. The function SIGN

returns the magnitude of the first arguement and the sign of the second argue-

ment. p,,,, is a small constant which is inpnted. Furthermore, instabilities can

occur if the first-derivatives on the right-hand side of Equations 5.3 and 5.4 are

centrally differenct_'tl; therefore, the ¢lerivatiw_s are approximated using forward

or backward differen(:ing, del)ending on the sign of t, and q. For example, if p

is l)ositive, the 't derivatives are approximated using forward differencing, and

if it is negatiw,, backward differencing is used. The ( derivatives are calculated

similarly, depending on tl,e sign of q. For the present study, Line Successive

Over-Relaxation was used to solve Equations 5.3 and 5.4, and grid sequencing

wa.s used to minimize computational time. The value for up and w_ was .09, and

p,,,, and q,,, varied with the it(;ratioll h;w;I from 0.l to 0.5. The exponential

constants a and b varied from 0.4 to .S, (h?ending orl the axial location where

the grid was generate(t.
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x,y specified at each point

Computational Domain

Figure 5.1: IJhptlc grid generation.
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5.2 Grid Spacing

For the Euler calculation, the grid spacing between the surface and the first

constant (-line was set to be of the order of 10 -3 everywhere. For the viscous

calculations, to ensure accurate prediction of the skin friction the size of the first

grid cell away from the body is more critical than in the inviscid calculations.

The general ruh; of thumb, based on past calculations of this type, is that the

grid spacing shouhl be such a size so that tile corresponding _+ values to the

center of tile first, grid cells are of order of one-tenth, y+ is the standard height

parameter used in turbulent flow calculations, given by

y+ _ A:/_/_ (5.28)
//

where Ay is the grid size, r_, is the wall shear stress, ? is the density, and u is

the coefficient of kinematic viscosity, Thus, the required height of the first grid

cell can be calculated by solving the above equation for y+. This was done by

approximating the wall density, the kinematic viscosity, and the shear stress

using the reference temperature method. In this method, the local turbulent

skin friction coefficient is given by

0.0592

c/- (/_,)0 _ (5.29)

where

nc'_ _/t_x (5.30)

p' and p' are, the density and viscosity respectively evaluated at the reference

temperature, 7", given by

• oT' = 7_,.11 + 0.032M/+ 0.58( - 11 (5.31)

where M, is the edge Math number and 7_,, is the wall temperature. Viscosity

is assumed to vary exponentially; hence, p' is calculated by

l,' _ (5.32)
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and ,0 is set to be 0.75 for the present work. The wall shear stress is calculated

by

r_, = cl(lp'vo_) (5.33)

For the present study, the edge Mach number was set to be the freestream

Mach number instead of local edge Mach number for convenience and a value

of y+ = 0.2 was used. The grid spacing calculated using Equation 5.28 was

then multiplied by a parameter which varied from the leading edge point to the

center-line, having a maximum value at the leading edge point and a minimum

value at the center-line to account for the fixed Mach number. Since this is

only an approximation, the actual values of y+ must be checked to ensure the

accuracy of the results. For all cases, the actual values of y+ based on results

from the calculation varied from 0.1 to 0.5; thus, satisfying the condition stated

previously.

The final three-dimensional grid was obtained by connecting the two-dimensional

grid generated for each axial-location, which results in a C-H topology. The grid

for the region in front of the nose was constructed by duplicating the grid at

the nose and placing it in front of the body. The grid topology for the Mach

6 Euler calculation is shown in Figure 5.2. Figure 5.3 shows the details of the

grid near the sharp leading edge for the inviscid calculation and the rounded

leading edge h)r the viscous calculations. Superimposed on the sharp leading

edge is the shape of tl,e rom,ded leading edge.

5.3 Grid Adaptation

To achiew' better shock resolution, an adapted grid was used for the inviscid

calculation of a sharp leading edge waverider at on-design conditions. The

adapted grid was generated using a method dew,loped by Hsu and Lytle2S The

idea behind the scheme, known as tl,e arc equidistribution scheme, is to have

the grid size inversely proportional to a weight fm,ction so that the product

of the weight function and the grid size are approximately equal at each grid

cell. When the gradient of the flow variables is used to construct the weight
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function, the grid will be dense at regions of high gradient thus reducing the

discretization error in the region.

A Sj wj = )tCj (5.34)

where

and

AS -" V(Xj+I -- zj) 2 -[- (Yj+I -- _j)2 (5.35)

wj = 1 + _[u_+l - ui[ (5.36)

u represents any of the flow variable, as well as, any combinations. _ is a constant

which controls the sensitivity of adaptation to the flow gradient. Larger value

of _ will cause the grid to be more dense in the region for given flow gradient.

C_ is taken to be

= as; (5.37)

where the superscript %" denotes the arc lengths of the original non-adaptive

grid. This allows for the new grid to have a memory of the spacing of the

original grid; hence the new grid will be similar to the original grid. Coefficient

,_ is a constant which is determined so that the total arc length of the new grid

is the same as the old arc, i.e.,

(5.38)

From the above equation

___je_i (5.39)

After obtaining a flowfield solution from the non-adaptive grid, the grid was

clustered in the regions of high pressure gradient in the (; direction; hence,

Equation 5.36 becomes

wk = 1 + fl Ipk+l - P_I (5.40)

with/_ = 50. For each constant i-line,two sets of cubic-splines with the arc length

as the independent variable and z and y as the dependent variables are created.
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The new arc length i_ calculated from Equation 5.34, and to ensure a smooth

grid, tile new arc lengths are averaged using a four point averaging,

1
Sj,t_= _'(S./+1.k+ Sj-l,k+ Sj,t-1+ Sj,t+,) (5.41)

The smoothing process, which is in fact a Point Jacobian Method for a Laplace

equation, is applied for two or three iterations. Finally, using the new arc length

and the cubic-splines, the grid points are redistributed along each constant (-

line. Figure 5.4 shows the original non-adaptive grid and the adaptive grid at

the exit flow plane.
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Figure 5._: Three-dimensional grid for Mach 6 waverider.
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Invisdd Grid

Viscous Grid

Figure 5.3: I)etails of tile leading edge, fi_r th_ inviscid grid and the viscous grid.

40



Adaptive Grid Non-adaptive Grid

Figure 5.4: Non-adal_tiw, grid and adaptive grid for Mach 6 inviscid calculation.
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Chapter 6

Results

6.1 Configuration

The wa, verider shape used in this study was generated in a flowfield pro-

duced by a cone with a semi-apex angle of 7.09 degrees. The design Mach

number was Mach 6, and the design static conditions correspond to freestrearn

conditions at an altitude of 30 kin. Note that this design condition corresponds

to typical hypersonic cruise conditions. The bow shock angle produced by the

cone-body at this Math number is 12 degrees. The leading edge coordinates

for this waveridcr are given in Appendix A. The length of the vehicle was set

to be 60 meters, and the surface temperature was set to be a constant value

of 1,10(} K. The boundary layer was assumed to be fully turbulent everywhere

on the w_hi(:le, and the Shal)(' wa._ optimized for maximum L/D. This config-

uration corresponds to tim so-called "best optimum" waverider for maximum

L/l) at the given (lesign condition. The tol) , front, and perspective view of this

waverider are shown in i"igurc 6.2.

To give realistic meaning to the viscoHs calculation and to study the effects

of leading-edge roundness, the original sharp leading edge was rounded. For

tl,e present study the radius of the leading edge was set to be r= 1 cm, which

corresponds to the minimum radius nec_'ssary for active cooling, as explained

by Vanmo117. The leading edge was rounded for each cross-section by moving
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inward from the leading edge until the radius of the inscribed circle of a triangle

matched the desired leading edge radius. The triangle was constructed at the

leading edge using three grid points and everywhere else by extending the line

segments defined by the two surface grid points as shown in Figure 6.1.

Original Sharp Cross-secti

\

Prescribed Radius

Figure 6.1: Rounding the leading edge.

6.2 Solution Methodology

All computations were run on an waverider, which was optimized for a

Mach 6 cruise flight at an altitude of 30 km, as previously stated. The values of

freestream static pressure and static temperature were taken to be the design

point values of 1185.5 N/rn 2 and 231.3 K, respectively. All the cases were run

at zero degrees angle of attack, i.e., tile upper surface was aligned with the

freestream flow. TILe flow was assumed to be calorically perfect and a specific

heat ratio value of 1.4 was used. Inviscid calculations were done for both the

rounded leading edge waverider and tile original sharp leading edge waverider
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at the on-design freestream Mach number of 6. Viscous calculations were done

for the rounded leading edge waverider at off-design Mach numbers of 4 and

8, as well as the on-design Mach number. The flow was assumed to be fully

turbulent, and the wall temperature was set at the design wall temperature

value of 1100 K for Mach 6 and 8 calculations and 725 K for Mach4 calculation,

everywhere on the vehicle.

Second-order extrapolation was used for the exit flow plane boundary condi-

tion. A global iteration was performed for all of the calculations until the drag

coefficient varied by less than one-tenth of a percent over 100 iterations.

A grid dimension of 21x91xS1, which corresponds to the dimension of the

grid in the _, rt, and _ directions, respectively, was used for the Mach 6 and

8 calculations. The values of the dimension correspond to the number of grid

points in the streamwise direction, circumferential direction, and the radial

direction, respectively. For the Math 4 calculation a 46xglx51 grid was used.

When the computation was originally done for Mach 4 using 26xglx51 grid, the

code produced results with compression waves emanating from the lower surface,

which were not present in the higher Mach number calculations. By increasing

the number of points in the streamwise direction to 46, the non-physical waves

caused by minor surface irregularities were eliminated.

6.3 Euler Calculation

The pressure data from MAXWARP carl be taken as an "exact solution" to

the inviscid flow field, within the numerical errors associated with the fourth-

order Runge-Kutta method and cubic-spline interpolation of the cone-flow.

Therefore, the inviscid results from MAXWARP, i.e., the Taylor-Maccoll so-

lution can be used fi)r validation of the Euler results. Figure 6.3 is the pressure

contour plot at the exit flow plane. The left portion of the diagram represents

the "exact solution," where the pressure was calculated for each grid point using

the cone-flow solution from MAXWARP and a cubic-spline interpolation. The

right portion of the diagram is constructed from the Euler solution obtained

from the computationl Note the excellent agreement in the shock location. The
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slight difference in the locations of the pressure contour lines within the shock

is primarily due to the finite shock thickness calculated by the Euler solution.

Also, the minor differences may be caused by the extrapolation of the cell av-

eraged values which are calculated by the finite volume algorithm. The surface

pressure distribution at the exit flow plane is shown in Figure 6.4. Except near

the center-line, both solutions are in good agreement. Once again, differences

near the center-line are due to the finite shock thickness calculated by the Euler

solution. Table 6.3 lists the force coefficients, CL and Co, and L/D calculated by

MAXWARP and CFL3D. The values predicted from the two codes are in good

agreement. For both codes the base drag was calculated using the freestream

static pressure value.

MAXWARP CFL3D % Difference

CL 3.172E-2 3.168E-2 .126

Co 2.257E-3 2.315E-3 2.57

L/D 14.06 13.68 2.70

Table 6.1: Inviscid force coefficients and L/D for Mach 6 calculation.

6.4 Navier-Stokes Calculations

One of the primary objectives of this study is the validation of the viscous

forces predicted by the MAXWARP design code. Since the leading edges of

the waverider for the Navier-Stokes calculations were rounded, the bow shock

will no longer be attached to the leading edge. Therefore, the pressure and

viscous force in the region near the leading edge will be different from the orig-

inal configuration and a direct comparison between the two results will not be

exact; however, since the leading edge radius is significantly smaller than the

overall size of the vehicle, the computational results should compare well with

the MAXWARP prediction. Table 6.2 shows the direct comparison of the force

coefficients and L/D predicted by the two codes, and Table 6.3 shows the con-

tributions of the inviscid and viscous forces to the total force predicted by the
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two codes. The performance predicted by the two codes compares very well.

The CFL3D calculates lift and drag coefficients that are 1.86% and 6.87%, re-

spectively, higher then the MAXWARP code predictions. The larger increase in

drag coefficient is due to the effects of the leading edge roundness on the inviscid

flowfield, which can be seen by comparing the inviscid drag coefficients, i.e., the

wave drag coefficient in Table 6.3. It is noted that the viscous contribution to

the total drag is practically the same for both codes.

MAXWARP CFL3D % Difference

CL 3.168E-2 3.228E-2 1.86

Co 4.089E-3 4.391E-3 6.87

L/D 7.74 7.35 5.31

Table 6.2: Force coefficients and L/D for Mach 6 calculation.

Code Inviscid Viscous Total

MAXWARP CL 3.172E-2 -.004E-2 3.168E-2

Cn 2.257E-3 1.832E-3 4.089E-3

CFL3D CL 3.237E-2 -.009E-2 3.228E-2

Cn 2.549E-3 1.842E-3 4.391E-3

Table 6.3: Tile inviscid, viscous, and the total force coefficients for Math 6 calculation.

Figure 6.5 show l.he surface pressure variation in the streamwise direction

along tile centerline on tile top and bottom surface, and the leading edge. Along

the leading edge, the pressure monotonically decreases from a maximum value

at the nose region to a minimum value at the trailing edge. This variation is

analogous to the variation of tile sweep angle. On the other hand, the surface

pressure monotonically increases along the centerline on the bottom surface,

which is consistent with tile pressure variation along a streamline in a conical

flow. Note thai, along the centerline oil tile top surface, the pressure remains

essentially constant. Figures 6.6 and 6.7 show the pressure contours at a cross-
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section located at 60% of the chord and at the exit flow plane, respectively. Both

figures show that, although there is some increase in pressure in the flowfield

above the vehicle, the increase is minor and the flow can be said to be essen-

tially contained. The shock is located near where the Taylor-Maccoll equation

predicts, and the flow within the shock is still very uniform and varies like the

conical-flowfield; however, the values are no longer the same for given loca-

tions. This is caused by the displacement of the flow away from the body by

the boundary layer, which causes the pressure to be at a higher value than the

coneflow value at a given radial direction away from the surface.

Figures 6.8 and 6.9 show the surface pressure distribution at a cross-section

located at 60% of the chord and at the exit flow plane. Both figures show

marked increase in pressure at the leading edge compared to the design code

solution due to the stagnation flow. Immediately downstream of the leading

edge, the flow rapidly expands on both side of the surface and then recompresses

to pressures slightly higher than the conical values. The difference gradually

decreases towards the center-line and returns to the values of the conical-flow.

Figures 6.10 and 6.11 show the pressure contours at a cross-section located

at 60% of the chord and at the exit flow plane, respectively, for the Mach 8

off-design calculation. As expected the shock is pressed closer to the body near

the center-line and is about two-thirds of the height of the on-design shock

location; also, the bow-shock has less curvature in the cross-flow plane, and

the pressure varies almost two-dimensionally. Near the leading edge, the flow

variation is qualitatively similar to the on-design flowfield, even though the bow

shock shape is no longer circular.

Figures 6.12 and 6.13 show the surface pressure distribution at a cross-

section located at 60% of the chord and at the exit flow plane, respectively.

Due to the higher jump in pressure across the bow shock, the surface pressltre

ratio is about 25 % higher than the on-design value. But, the surface pressure

still varies similarly to the on-design condition, decreasing towards the leading

edge until it is affected by the stagnation flow.

Figures 6.14 and 6.15 show the surface pressure distribution at a cross-section
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locatedat 60%of the chordand at the exit flowplane,respectively,for the Mach

4 off-design calculation. As expected, compared to the on-design Mach number

calculation, the shock detachment is pronounced. The overall uniformity of the

flowfield within the shock is better than the higher Mach number cases due to

a weaker shock, and the variation of the flowfield no longer matches the conical

flowfield. Also, compared to the higher Mach number flows, the leading edge

has a greater influence on the neighboring flowfield.

Figures 6.16 and 6.17 show the surface pressure distribution at a cross-section

located at 80% of the chord and at the exit flow plane. In both figures the

variation of surface pressure in the circumferential direction no longer behaves

like the higher Mach number cases. On the lower surface the pressure is almost

constant across tile span except near the leading edge where it increases to the

stagnation value.

The static pressure contour plots for different Mach numbers indicate that

the maximum percent difference in the pressure within the region where the

combustor entrance would be most likely located is approximately 10 %, thus

providing initial indications of flow uniformity.

Figures 6.18 -6.23 show the mass flux distributions at the 60% chord plane

and the exit plane for the three Mach ,,umber calculations. Mass flux distribu-

tion is a good measure of inlet performance, since loss in mass flux results in

a reduction in thrust, and large gradients in mass flux tend to require complex

fueling schedules. Figures 6.18 and 6.19 show the mass flux distributions, at the

60% chord plane and the exit plane, respectively for the design Mach number of

6. As a comparison the mass flux distribution for the inviscid flow is shown on

the left hand side of the figures. At each cross-section the effect of the boundary

layer is to increase the region of higher mass flux; however, the boundary layer

also results in a region of large gradient. Comparing the two cross-section, al-

though there is a slight decrease in the magnitude, the distribution of the mass

flux at the 60% chord is more uniform than the distribution at the exit plane.

Figures 6.20-6.21 show the distributions for Mach 8 case. The plots show that

compared to Mach 6 results, the gradient of the mass flux is greater, but the
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distribution is similar along radial direction away from the body to the shock.

Note that the boundary thickness based on mass flux nondimensionalized with

respect to freestream conditions is thinner than the Mach 6 boundary layer.

Figures 6.22-6.23 show the mass flux distributions for the Mach 4 case. Ne-

glecting the flow within the boundary layer, the region of uniform mass flux has

greatly increased at this lower Mach number. This result tends to indicate that

the flow about the body has become more two-dimensional, as the freestream

Mach number was decreased.

Another good measure of forebody design is the amount of side wash angle

at the entrance of the combustor. The increase in side wash angle contributes

to reduction in thrust due to loss of momentum in the flight direction and shock

generation on the side walls of the combustor. Figures 6.24- 6.29 show the side

wash angle distributions at the 60% chord plane and the exit plane for the three

cases. Once again, for comparison purposes, the side wash angle distribution

for the Mach 6 inviscid flow is shown on the left hand side of the figures.

Figures 6.24 and 6.25 show the side wash angle distributions for the Mach 6

case. Since the generating flow is conical, the side wash angle is equal to the

angle between the line of symmetry and the ray emanating from the vertex of

the generating cone, as seen in the left hand side of the figures. At each cross-

section, the side wash angle within the region of the inviscid shock layer matches

closely to the inviscid solution; thus, if a modular scramjet design were to be

used, the effects of side wash can be reduced. For example, if six modules with

a total width of a third of the span of the vehicle were used, the flow angularity

experienced by each module would be roughly less than +1.5 degrees. Note that

at both cross sections tile side wash angle is larger than the corresponding ray

angle, which may be the influence of tile rounded leading edge.

Figures 6.26 and 6.27 show the side wash angle distributions for the Mach 8

case. The side wash angle distributions are similar to the Mach 6 distribution

in that the side wash angle in the inviscid shock layer increases with the ray

angle and the angularity within the boundary layer is greater than the angle of

the ray; however, the similarity degrades near the leading edge. Note that for
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this Mach number the magnitude of the side wash angle remains slightly less

than the corresponding ray angle.

Figures 6.28 and 6.29 Show the side wash angle distributions for the Mach

4 case. The side wash angle distributions for the Mach 4 results are in stark

contrast to previous flow distribution plots, where the flow parameters exhibited

little variation. In fact, the side wash angle gradient in the span wise direction

for the Mach 4 case is greater than the gradients for the higher Mach number

cases. The higher gradient is the result of the larger shock separation from the

leading edge.

The lift and drag coefficients and the L/D values for the on-design as well as

the two off-design cases are tabulated in Table 6.4. Figure 6.30 and 6.31 show

the break down of the lift and drag coefficients. The dominant lift, as expected,

is generated by the inviscid pressure on the lower surface for all the ranges of

Mach number. The effects of leakage do increase with Mach number, but the

overall effects on the lift are minimal. For the drag coefficient, skin friction

contributes approximately half the total drag, with the contribution increasing

at off-design conditions. As expected the drag coefficient on the upper surface,

which can be taken essentially as the skin friction coefficient, decreases with

increasing Mach number.

Figure 6.32 compares the L/D values of the Mach 6 waverider used in the

present investigation with the viscous optimized waveriders at different Mach

numbers. The L/D values for the viscous optimized waveriders were calcu-

lated by MAXWARP using the same conditions as the CFL3D calculations. As

expected, the difference in performance do increases at off-design conditions;

however, overall, the off-design performance of the Mach 6 waverider compares

well with the performance of waveriders optimized for the off-design conditions.
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CL Co L/D

Mach 4 4.354E-2 5.679E-3 7.66

Mach6 3.228E-2 4.391E-3 7.35

Mach 8 2.520E-2 3.726E-3 6.76

Table 6.4: Force coefficients and L/D at on and off-design conditions.

Figure 6.2: Mach 6 viscous optimized waverider.
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Figure 6.3: Comparison of MAXWARP results and CFL3D Euler results for Mach 6 calcula-

tion: Pressure contour at exit flow plane.
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Figure 6.4: Comparison of MAXWARP results and CFL3D Euler results for Mach 6 calcula-
tion: Surface pressure distribution at exit flow plane and the outline of the cross-section.
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Figure 6.6: Comparison of MAXWARP resultsand CFL3D resultsfor Mach 6 calculation:

Pressure contour at cros_sectionlocatedat 60 % of the chord.
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Figure 6.7: Comparison of MAXWAILP Results and CFL3D Results for Mach 6 calculation:

Pressure contour at exit flow plane.
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Figure 6.8: Comparison of MAXWARP results and CFL3D results for Math 6 calculation:
Surface pressure distribution at cross-section located at 60 % of the chord and the outline of
the cross-section.
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Figure 6.9: Comparison of MAXWARP results and CFL3D results for Mach 6 calculation:
Surface pressure distribution at the exit flow plane and the outline of the cross-section.
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Figure 6.10: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 8
calculation: Pressure contour at cross-section located at 60 % of the chord.
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Figure 6.11: Comparison of MAXWARP results for Math 6 and CFL3D results for Math 8
calculation: Pressure contour at exit flow plane.
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Figure 6.12: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 8

calculation: Surface pressure distribution at cross-section located at 60 % of the chord and

the outline of the cross-section.
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Figure 6.13: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach
8 calculation: Surface pressure distribution at the exit flow plane and the outline of the

cross-section.
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Figure 6.14: Comparison of MAXWARP for Mach 6 results and CFL3D results for Math 4

calculation: Pressure contour at cross-section located at 60 % of the chord.
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Figure 6A5: Comparison of MAXWARP results for Mach 6 and CFL3D results for Math 4

calculation: Pressure contour at exit flow plane.
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Figure 6.16: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 4

calculation: Surface pressure distribution at cross-section located at 60 % of the chord and
the outline of the cross-section.
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Figure 6.17: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach
4 calculation: surface pressure distribution at the exit flow plane and the outline of the
cross-section.
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Figure 6.18: Comparison of MAXWARP re.suits and CFL3D results for Mach 6 calcula-
tion: Mass flux contour at cross-section located at 60 % of the chord and the outline of the
cross-section.
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Figure 6.19: Comparison of MAXWARP results and CFL3D results for Math 6 calculation:
Mass flux contour at the exit flow plane and the outline of the cross-section.
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Figure 6.20: Comparison of MAXWARP results for Math 6 and CFL3D results for Mach 8
calculation: Mass flux contour at cross-section located at 60 % of the chord and the outline
of the cross-section.
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Figure 6.21: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 8
calculation: Mass flux contour at the exit flow plane and the outline of the cross-section.
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Figure 6.22: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 4
calculation: Ma.ss flux contour at, cross-section located at 60 % of the chord and the outline

of the cross-section.
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Figure 6.23: Comparison of MAXWARP results for Mach 6 and CFL3D results for Mach 4
calculation: Mass flux contour at the exit flow plane and the outline of the cross-section.
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Figure 6.24: Comparison of MAXWARP results and CFL3D results for Mach 6 calculation:

Side wash angle contour at cross-section located at 60 % of the chord and the outline of the
cross-aection.
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Figure 6.25: Comparison of MAXWARP results and CFL3D results for Mach 6 calculation:

Side wash angle contour at the exit flow plane and the outline of the cross-section.
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Figure 6.26: Comparison of MAXWARP results for Mach 6 and CFL3D results for Math 8

calculation: Side wash angle contour at cross-section located at 60 % of the chord and the
outline of the cross-section.
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Figure 6.27: Comparison of MAXWARP results for Math 6 and CFL3D results for Math 8

calculation: Side wash angle contour at the exit flow plane and the outline of the cross-section.
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Figure 6.28: Comparison of MAXWARP results for Math 6 and CFL3D results for Mach 4
calculation: Side wash angle contour at crog_-section located at 60 % of the chord and the
outline of the cross-section.
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Figure 6.29: Comparison of MAXWARP results for Math 6 and CFL3D results for Mach 4

calculation: side wash angle at tile exit flow plane and the outline of the cross-section.
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Figure 6.30: Inviscid and viscous force contribution to tlle total lift coefficient.
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Figure 6.31: lnviscid and viscous force contribution to the total drag coefficient.
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Figure 6.:_2: Comparison between the I,/D values calculated by CFL3D for the Mach 6 viscous

optimized waverider and the L/D values predicted by MAXWARP for the Math 4, 6, and 8
viscous optimized waveriders.
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Chapter 7

Conclusions and

Recommendations

7.1 Conclusions

Tile present work is the first Navier-Stokes computation of the viscous op-

timized waverider at off-design Mach numbers. Navier-Stokes calculations were

made at Mach numbers 4, 6, and 8 for a Mach 6 viscous optimized waverider.

Good comparisons were found between the inviscid forces from MAXWARP

and the Euler solution from CFL3D; thus, validating the inviscid solver of

CFL3D. Good comparison also resulted between MAXWARP and the Navier-

Stokes calculations at the on:design condition. Especially, excellent agreement

was obtained between the two codes for the contribution of viscous effects on

drag. From these results, it can be stated that MAXWARP can be used with

confidence for preliminary design of hypersonic forebodies. From the Mach 6

calculation it was observed that the rounding of the leading edge to 0.01 m

radius had a negligible effect on the containment and the structure of the in-

viscid flowfield on the lower surface as well as the overall performance of the

vehicle; however, some effects were noted in the side wash angle distribution

in the boundary layer. Computational results for the off-design Mach numbers

demonstrate that the performance of the optimized waverider does not degen-

erate rapidly with off-design conditions as initially feared, and in actuality the
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performanceat off-designconditionscompareswell with the performanceof wa-

veridersoptimized for thoseconditions. The uniformity of key flow parameters

for inlet performancewas maintained throughout the range of Mach numbers

which demonstratesthat the configuration will makean excellent forebody de-

sign for a hypersoniccruisevehicle.

7.2 Recommendations

Because the primary objective of this numerical experiment was to obtain

force data for the Mach 6 waverider for on and off design conditions, no detail

analysis of the flow within the boundary layer was done. The thickness of the

boundary layer at the end of the forebody can have significant effect on the

combustor performance. The boundary layer thickness based on velocity profile

for the Mach6 case was was approximately 40.0 cm at the exit flow plane, which

is consistent with the presently available correlation for the turbulent boundary

layer thickness. If this value is indeed correct, then some method to reduce the

boundary layer thickness will be necessary. Thus it is important for the future

development of the engine/airframe integrated design to do a detailed analysis

of the boundary layer at high Reynolds number.

Calculations should be done for different waverider shapes to see whether

some sacrifice in performance at the on-design condition can improve the off-

design performance.

Finally, as the design matures for the air-breathing hypersonic vehicle, cal-

culations should be performed at multiple points along tile flight path for the

entire vehicle.
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Appendix A

Leading Edge Coordinates
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Y Z

0.00000E+00

3.72455E-01

7.44910E-01

1.11737E+00

1.48982E+00

1.86228E+00

2.23473E+00

2.60719E+00

2.97964E+00

3.35210E+00

3.72455E+00

4.09701E+00

4.46946E+00

4.84192E+00

5.21437E+00

5.58683E+00

5.95928E+00

6.33174E+00

6.70419E÷00

7.07665E+00

7.44910E+00

7.82156E+00

8.19401E+00

8.56647E÷00

8.93892E+00

9.31138E+00

1,98334E+01

1.98769E+01

1.99210E+01

1.99659E+01

2.00119E+01

2.00590E+01

2.01077E+01

2.01580E+01

2.02102E+01

2.02645E+01

2.03212E+01

2.03804E+01

2.04424E+01

2.05074E+01

2.05756E+01

2.06472E+01

2.07225E+01

2.08016E+01

2.08849E+01

2.09725E+01

2.10648E+01

2.11620E+01

2.12645E+01

2.13723E+01

2.14860E+01

2.16056E+01

Table A.I: Leading edge coordinates for Math 6 viscous optimized waverider.
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V =_ Z

9.68384E+00 2.17315E+01

1.00563E÷01 2.18640Eq-01

1.04287E+01 2.20033E+01

1.08012E÷01 2.21498E+01

1.11737E+01

1.15461E+01

1.19186E+01

1.22910E+01

1.26635E+01

1.30359E÷01

1.34084E+01

1.37808E+01

1.41533E+01

1.45258E+01

1.48982E--01

1.52707E--01

1.56431E--01

1.60156E--01

1.63880E--01

1.67605E--01

1.71329E--01

1.75054E--01

1.78779E÷01

1.82503E÷01

1.86228E÷01

2.23036E+01

2.24650E÷01

2.26344E÷01

2.28119E+01

2.29979Eq-01

2.31920E+01

2.33939E+01

2.36030E+01

2.38187E÷01

2.40406E+01

2.42681E÷01

2.45008E+01

2.47381E+01

2.49795E+01

2.52245E+01

2.54725E+01

2.57232E÷01

2.59759E÷01

2.62301E+01

2.64853E+01

2.67411E+01

Table A.2: Leadiag edge coordinates for Math 6 viscous optimized waverider. (continued)
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